论文标题
Jacobi-Zariski的缔合代数近几乎精确的序列
Jacobi-Zariski long nearly exact sequences for associative algebras
论文作者
论文摘要
为了扩展一个在字段上的关联代数$ b \ subset a $和$ a $ a-bimodule $ x $,我们获得了jacobi-zariski long几乎精确的序列,与$ a $ a $ a $ a和$ b $的Hochschild同源物以及相对Hochschild的Hochschild同源物以及它们与$ x $ x $ x $ x $的系数相关。这个长序列在三个中精确两次。有一个光谱序列会收敛到精确性的间隙。
For an extension of associative algebras $B\subset A$ over a field and an $A$-bimodule $X$, we obtain a Jacobi-Zariski long nearly exact sequence relating the Hochschild homologies of $A$ and $B$, and the relative Hochschild homology, all of them with coefficients in $X$. This long sequence is exact twice in three. There is a spectral sequence which converges to the gap of exactness.