论文标题

改进量子退火的高级退火路径

Advanced anneal paths for improved quantum annealing

论文作者

Pelofske, Elijah, Hahn, Georg, Djidjev, Hristo

论文摘要

量子退火技术的进步使得获得重要的NP-硬性问题的高质量近似解决方案成为可能。借助D-Wave Exerealer的新一代,可以使用更高级的功能,使用户可以更好地控制退火过程。在这项贡献中,我们研究了这些功能如何有助于提高退火器返回的解决方案的质量。具体来说,我们专注于其中两个功能:反向退火和H foin。将反向退火(RA)设计为允许通过从代表溶液的经典状态向后的横向场中的横向场中的溶液向后退火来完善已知的解决方案,然后是普通的正向退火,希望可以改善先前的溶液。 H-GOAIN(HG)功能代表了哈密顿线性($ H $)偏见的时间依赖性增益,最初是为了帮助研究旋转玻璃杯中的冷冻时间和相变。在这里,我们将HG应用于退火过程开始时偏向量子状态,将已知的解决方案降低为RA情况,但使用不同的设备。我们还研究了混合反向退火/h获得时间表,该时间表类似于RA步骤,并且其前阶段使用HG的想法。为了优化时间表的参数,我们采用了贝叶斯优化框架。我们在各种输入问题上测试所有技术,包括加权最大切割问题和加权最大集团问题。我们的结果表明,每种技术都可以根据输入实例主导其他技术,并且HG技术是RA对于某些问题的可行替代方案。

Advances in quantum annealing technology make it possible to obtain high quality approximate solutions of important NP-hard problems. With the newer generations of the D-Wave annealer, more advanced features are available which allow the user to have greater control of the anneal process. In this contribution, we study how such features can help in improving the quality of the solutions returned by the annealer. Specifically, we focus on two of these features: reverse annealing and h-gain. Reverse annealing (RA) was designed to allow refining a known solution by backward annealing from a classical state representing the solution to a mid-anneal point where a transverse field is present, followed by an ordinary forward anneal, which is hoped to improve on the previous solution. The h-gain (HG) feature stands for time-dependent gain in Hamiltonian linear ($h$) biases and was originally developed to help study freezeout times and phase transitions in spin glasses. Here we apply HG to bias the quantum state in the beginning of the annealing process towards the known solution as in the RA case, but using a different apparatus. We also investigate a hybrid reverse annealing/h-gain schedule, which has a backward phase resembling an RA step and whose forward phase uses the HG idea. To optimize the parameters of the schedules, we employ a Bayesian optimization framework. We test all techniques on a variety of input problems including the weighted Maximum Cut problem and the weighted Maximum Clique problem. Our results show that each technique may dominate the others depending on the input instance, and that the HG technique is a viable alternative to RA for some problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源