论文标题

无定形固体模型中的热活化流动

Thermally activated flow in models of amorphous solids

论文作者

Popović, Marko, de Geus, Tom W. J., Ji, Wencheng, Wyart, Matthieu

论文摘要

通过动态相变的限制应力$σ$的临界值的无定形固体产量。虽然在Athermal系统中敏锐,但热波动的存在导致过渡和热活化流的圆形,甚至低于$σ_c$。在这里,我们使用介质弹性塑性模型研究了无定形固体的稳态热流。在Hebraud-Lequex(HL)模型中,我们在低温下提供了热激活流的分析解决方案。然后,我们提出了一个一般规模定律,该法律也描述了过渡舍入。最后,我们发现缩放定律在HL模型,2D弹性模型的数值模拟中以及先前发布的2D Lennard-Jones玻璃的分子动力学模拟中。

Amorphous solids yield at a critical value $Σ_c$ of the imposed stress $Σ$ through a dynamical phase transition. While sharp in athermal systems, the presence of thermal fluctuations leads to the rounding of the transition and thermally activated flow even below $Σ_c$. Here, we study the steady state thermal flow of amorphous solids using a mesoscopic elasto-plastic model. In the Hebraud-Lequex (HL) model we provide an analytical solution of the thermally activated flow at low temperature. We then propose a general scaling law that also describes the transition rounding. Finally, we find that the scaling law holds in numerical simulations of the HL model, a 2D elasto-plastic model, and in previously published molecular dynamics simulations of 2D Lennard-Jones glass.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源