论文标题

在台面中耦合行星和流体动力大气逃逸的耦合

Coupling thermal evolution of planets and hydrodynamic atmospheric escape in MESA

论文作者

Kubyshkina, Daria, Vidotto, Aline A., Fossati, Luca, Farrell, Eoin

论文摘要

氢气型行星的氢气大气的长期演变主要由两个因素控制:在地层时获得的重力(称为热进化)和大气质量损失的重力缓慢消散。在这里,我们使用MESA自愿将较低大气的热演化模型与逼真的水动力大气蒸发处方处开处方。为了概述此类耦合的主要特征,我们模拟了具有一系列核心质量(5-20​​ Mearth)和初始大气质量分数(0.5-30%)的行星,以0.1 au的旋转旋转太阳能恒星。除了计算出的进化轨道外,我们还研究了行星气氛的稳定性,表明可以将光行星的大气完全移除在1 Gyr之内,而紧凑的气氛具有更好的存活率。从我们的结果与上一代模型的输出之间的详细比较,我们表明,热演化和大气蒸发之间的耦合极大地影响了低质量行星的大气热状态,因此改变了大气质量分数与行星参数之间的关系。因此,我们得出的结论是,对热进化和大气蒸发的自谐考虑对于进化建模和更好地表征行星大气至关重要。从我们的模拟中,我们得出了不同年龄的行星半径和大气质量分数之间的分析表达。特别是,我们发现,对于给定的观察到的行星半径,预测的大气质量分数随着年龄^0.11而变化。

The long-term evolution of hydrogen-dominated atmospheres of sub-Neptune-like planets is mostly controlled by two factors: a slow dissipation of the gravitational energy acquired at the formation (known as thermal evolution) and atmospheric mass loss. Here, we use MESA to self-consistently couple the thermal evolution model of lower atmospheres with a realistic hydrodynamical atmospheric evaporation prescription. To outline the main features of such coupling, we simulate planets with a range of core masses (5-20 Mearth) and initial atmospheric mass fractions (0.5-30%), orbiting a solar-like star at 0.1 au. In addition to our computed evolutionary tracks, we also study the stability of planetary atmospheres, showing that the atmospheres of light planets can be completely removed within 1 Gyr, and that compact atmospheres have a better survival rate. From a detailed comparison between our results and the output of the previous-generation models, we show that coupling between thermal evolution and atmospheric evaporation considerably affects the thermal state of atmospheres for low-mass planets and, consequently, changes the relationship between atmospheric mass fraction and planetary parameters. We, therefore, conclude that self-consistent consideration of the thermal evolution and atmospheric evaporation is of crucial importance for evolutionary modeling and a better characterization of planetary atmospheres. From our simulations, we derive an analytical expression between the planetary radius and atmospheric mass fraction at different ages. In particular, we find that, for a given observed planetary radius, the predicted atmospheric mass fraction changes as age^0.11.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源