论文标题

不均匀随机图

Quasi-cliques in inhomogeneous random graphs

论文作者

Bogerd, Kay

论文摘要

给定[0,1] $中的图形$ g $和常数$γ\,令$ω^{(γ)}(g)$是最大的整数$ r $,因此存在$ r $ vertex子级$ g $,其中包含至少$γ\ binom {r} {r} {2} {2} $ edges。最近显示,$ω^{(γ)}(g)$当$ g $是一个erdős-rényi随机图时高度集中(Balister,Bollobás,Sahasrabudhe,Veremyev,Veremyev,2019年)。本文提供了一种简单的方法,将结果扩展到不均匀的随机图设置,表明$ω^{(γ)}(g)$仍然集中在少量值上,即使$ g $是一个不均匀的随机图。此外,我们给出了$ω^{(γ)}(g)$的明确表达式,并证明它主要取决于图$ g $的最大边缘概率。

Given a graph $G$ and a constant $γ\in [0,1]$, let $ω^{(γ)}(G)$ be the largest integer $r$ such that there exists an $r$-vertex subgraph of $G$ containing at least $γ\binom{r}{2}$ edges. It was recently shown that $ω^{(γ)}(G)$ is highly concentrated when $G$ is an Erdős-Rényi random graph (Balister, Bollobás, Sahasrabudhe, Veremyev, 2019). This paper provides a simple method to extend that result to a setting of inhomogeneous random graphs, showing that $ω^{(γ)}(G)$ remains concentrated on a small range of values even if $G$ is an inhomogeneous random graph. Furthermore, we give an explicit expression for $ω^{(γ)}(G)$ and show that it depends primarily on the largest edge probability of the graph $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源