论文标题

优化复杂网络的合并双曲线嵌入

Optimisation of the coalescent hyperbolic embedding of complex networks

论文作者

Kovács, Bianka, Palla, Gergely

论文摘要

几个观察结果表明,实际网络背后存在一个潜在双曲线空间,这使得它们的结构非常直观,从某种意义上说,连接的概率随着节点之间的双曲距离而降低。沿该线路生成随机图的非凡网络模型是普及性相似性优化(PSO)模型,同时提供了无标度度分布,高聚类和小世界属性。这些结果为开发双曲线嵌入算法的开发提供了强大的动力,该算法解决了基于网络结构找到节点的最佳双曲线坐标的问题。双曲线嵌入的一种非常有希望的方法是由属于融合嵌入算法家族的非中心最小曲线嵌入(NCMCE)方法提供的。这种方法在较低的运行时间提供了高质量的嵌入。在目前的工作中,我们提出了该框架中角坐标的进一步优化,该框架似乎减少了对数损失并增加了与原始版本相比,嵌入的贪婪路由评分,从而增加了推断的双曲均衡量的质量,从而增加了额外的改进。

Several observations indicate the existence of a latent hyperbolic space behind real networks that makes their structure very intuitive in the sense that the probability for a connection is decreasing with the hyperbolic distance between the nodes. A remarkable network model generating random graphs along this line is the popularity-similarity optimisation (PSO) model, offering a scale-free degree distribution, high clustering and the small world property at the same time. These results provide a strong motivation for the development of hyperbolic embedding algorithms, that tackle the problem of finding the optimal hyperbolic coordinates of the nodes based on the network structure. A very promising recent approach for hyperbolic embedding is provided by the noncentered minimum curvilinear embedding (ncMCE) method, belonging to the family of coalescent embedding algorithms. This approach offers a high quality embedding at a low running time. In the present work we propose a further optimisation of the angular coordinates in this framework that seems to reduce the logarithmic loss and increase the greedy routing score of the embedding compared to the original version, thereby adding an extra improvement to the quality of the inferred hyperbolic coordinates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源