论文标题
Quantnet:学习通过在完全可区分的框架内学习来量化
QuantNet: Learning to Quantize by Learning within Fully Differentiable Framework
论文作者
论文摘要
尽管最近的二进制方法在降低二进制神经网络(BNNS)的性能降低方面取得了成就,但直接估计器(Ste)引起的梯度不匹配(STE)仍然占据了量化的网络。本文提出了一个名为Quantnet的基于元的量化器,该量子机利用可区分的子网络直接将完整的重量二进化而不诉诸于Ste和任何可学习的梯度估计器。我们的方法不仅解决了梯度不匹配的问题,而且还减少了由部署中的二进制操作引起的离散错误的影响。通常,所提出的算法是在完全可区分的框架内实现的,并且可以轻松地扩展到任何位。 CIFAR-100和ImageNet上的定量实验表明,QuantNet与先前的二进制方法相比,可以实现巨大的改进,甚至可以在二进制模型和完整模型之间的精确度上弥补精确度的差距。
Despite the achievements of recent binarization methods on reducing the performance degradation of Binary Neural Networks (BNNs), gradient mismatching caused by the Straight-Through-Estimator (STE) still dominates quantized networks. This paper proposes a meta-based quantizer named QuantNet, which utilizes a differentiable sub-network to directly binarize the full-precision weights without resorting to STE and any learnable gradient estimators. Our method not only solves the problem of gradient mismatching, but also reduces the impact of discretization errors, caused by the binarizing operation in the deployment, on performance. Generally, the proposed algorithm is implemented within a fully differentiable framework, and is easily extended to the general network quantization with any bits. The quantitative experiments on CIFAR-100 and ImageNet demonstrate that QuantNet achieves the signifficant improvements comparing with previous binarization methods, and even bridges gaps of accuracies between binarized models and full-precision models.