论文标题

RapidLearn:一种用于自主网络的通用工具包

RapidLearn: A General Purpose Toolkit for Autonomic Networking

论文作者

Sharma, Jatin, Behera, Nikhilesh, Venkatraman, Priya, Loo, Boon Thau

论文摘要

软件定义的网络已在分布式网络和智能网络中展开了新的机会领域。在分布式设置中执行机器学习非常感兴趣,利用了SDN的抽象,这使得在标准控制平面上编写复杂的ML查询变得更加容易。但是,大多数研究都是针对专业问题(安全性,绩效改进,中间箱管理等)而不是通用框架进行的。此外,现有工具和软件需要算法/网络的专业知识来操作或监视这些系统。我们构建了一个通用工具包,该工具包抽象了基础结构,算法和其他复杂性,并为普通用户提供了创建和部署分布式机器学习网络应用程序的直观方式。开关在本地层面做出决定,并与其他开关进行通信以改进这些决策。最后,控制者根据另一种算法(在我们的情况下投票)做出了全球决定。我们通过简单的DDOS检测算法证明了框架的功效。

Software Defined Networking has unfolded a new area of opportunity in distributed networking and intelligent networks. There has been a great interest in performing machine learning in distributed setting, exploiting the abstraction of SDN which makes it easier to write complex ML queries on standard control plane. However, most of the research has been made towards specialized problems (security, performance improvement, middlebox management etc) and not towards a generic framework. Also, existing tools and software require specialized knowledge of the algorithm/network to operate or monitor these systems. We built a generic toolkit which abstracts out the underlying structure, algorithms and other intricacies and gives an intuitive way for a common user to create and deploy distributed machine learning network applications. Decisions are made at local level by the switches and communicated to other switches to improve upon these decisions. Finally, a global decision is taken by controller based on another algorithm (in our case voting). We demonstrate efficacy of the framework through a simple DDoS detection algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源