论文标题

模式替代等价的新结果:概括经典定理并修改最近的猜想

New Results on Pattern-Replacement Equivalences: Generalizing a Classical Theorem and Revising a Recent Conjecture

论文作者

Ma, Michael

论文摘要

在本文中,我们研究了长度为$ n $的排列的集合$ s_n $上的模式替换等效关系。每个等效关系由一组模式确定,并且等效排列通过类似于Knuth关系的方式通过模式替换连接。 我们的主要结果之一概括了著名的ERDOS-SZEKERES定理,以避免置换模式 - 置换模式替换的新结果。特别是,我们表明,在$ \ {123 \ cdots k,k \ cdots 321 \} $ - 等价下,当$ s_n $中的所有排列在$ n \geΩ(k^2)$时都等同于平等。 此外,我们将Kuszmaul和Zhou的工作扩展到无限的模式替代等价家族中,称为旋转等价。 Kuszmaul和Zhou证明了旋转等价始终在$ s_n $中产生一个或两个非平地对等类别,并推测非平凡类的数量仅取决于旋转等价的模式(而不是$ n $)。我们对他们的猜想提出了反例,并在有一个非平凡的等价类别以及有两个非平凡的等效类时,证明了一个新的定理(对于大$ n $)。 最后,我们通过计算分析了由长度四的模式对给出的模式替换等价。然后,我们专注于三种情况,其中非平凡等效类的数量与OEIS序列匹配。对于其中两个,我们提供了枚举的全部证据,对于第三次,我们建议一种潜在的未来证明方法。

In this paper we study pattern-replacement equivalence relations on the set $S_n$ of permutations of length $n$. Each equivalence relation is determined by a set of patterns, and equivalent permutations are connected by pattern-replacements in a manner similar to that of the Knuth relation. One of our main results generalizes the celebrated Erdos-Szekeres Theorem for permutation pattern-avoidance to a new result for permutation pattern-replacement. In particular, we show that under the $\{123 \cdots k, k \cdots 321\}$-equivalence, all permutations in $S_n$ are equivalent up to parity when $n \ge Ω(k^2)$. Additionally, we extend the work of Kuszmaul and Zhou on an infinite family of pattern-replacement equivalences known as the rotational equivalences. Kuszmaul and Zhou proved that the rotational equivalences always yield either one or two nontrivial equivalence classes in $S_n$, and conjectured that the number of nontrivial classes depended only on the patterns involved in the rotational equivalence (rather than on $n$). We present a counterexample to their conjecture, and prove a new theorem fully classifying (for large $n$) when there is one nontrivial equivalence class and when there are two nontrivial equivalence classes. Finally, we computationally analyze the pattern-replacement equivalences given by sets of pairs of patterns of length four. We then focus on three cases, in which the number of nontrivial equivalence classes matches an OEIS sequence. For two of these we present full proofs of the enumeration and for the third we suggest a potential future method of proof.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源