论文标题

Snore:符号节点表示的无监督学习

SNoRe: Scalable Unsupervised Learning of Symbolic Node Representations

论文作者

Mežnar, Sebastian, Lavrač, Nada, Škrlj, Blaž

论文摘要

从复杂的现实生活网络中学习是一个活泼的研究领域,在学习信息丰富的低维网络节点表示方面取得了最新进展。但是,最新的方法不一定是可以解释的,因此不完全适用于在生物医学或用户分析任务中的敏感设置,而显式偏见检测高度相关。提出的SNORE(符号节点表示)算法能够基于作为特征的邻域哈希的相似性来学习单个网络节点的符号,人为理解的表示。 Snore的可解释特征适合直接解释单个预测,我们通过将其与广泛使用的实例解释工具形状结合起来来证明,以获取代表单个特征与给定分类的相关性的列线图。据我们所知,这是结构节点嵌入设置中的第一次尝试之一。在对11个现实生活数据集的实验评估中,Snore被证明对强基础具有竞争力,例如变化图自动编码器,Node2VEC和Line。将打snor量表的矢量化实施到大型网络中,使其适用于当代网络学习和分析任务。

Learning from complex real-life networks is a lively research area, with recent advances in learning information-rich, low-dimensional network node representations. However, state-of-the-art methods are not necessarily interpretable and are therefore not fully applicable to sensitive settings in biomedical or user profiling tasks, where explicit bias detection is highly relevant. The proposed SNoRe (Symbolic Node Representations) algorithm is capable of learning symbolic, human-understandable representations of individual network nodes, based on the similarity of neighborhood hashes which serve as features. SNoRe's interpretable features are suitable for direct explanation of individual predictions, which we demonstrate by coupling it with the widely used instance explanation tool SHAP to obtain nomograms representing the relevance of individual features for a given classification. To our knowledge, this is one of the first such attempts in a structural node embedding setting. In the experimental evaluation on eleven real-life datasets, SNoRe proved to be competitive to strong baselines, such as variational graph autoencoders, node2vec and LINE. The vectorized implementation of SNoRe scales to large networks, making it suitable for contemporary network learning and analysis tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源