论文标题
具有有限扩展储层的稳态电流的分析表达式
Analytic expressions for the steady-state current with finite extended reservoirs
论文作者
论文摘要
量子运输的开放系统模拟为研究真正的稳态,浮标状态以及温度,时间动力学和波动的作用以及其他物理过程提供了一个平台。他们正在迅速获得吸引力,尤其是围绕“扩展水库”围绕的技术 - 一系列有限数量的自由度,放松,并保持偏见或温度梯度 - 并以各种形式出现(例如,延伸或中介型储层,辅助大师,辅助等方程,ausprived lioubille neumann neumann -neumann -neumann neumann neumann neumann neumann neumann neumann neumann neumann neumann neumann neumann neumann neumann neumann neumann neumann neumann neumann neumann。但是,关于这些技术的行为和融合仍然存在许多开放问题。在这里,我们为由有限的储层驱动的稳态电流得出了一般的分析解决方案和相关的渐近分析,并与系统/交界处成比例耦合。在此过程中,我们通过任意连接(包括与比例耦合之外的连接)提出了对非相互作用和多体稳态电流的简化而统一的推导。我们猜测,用于比例耦合的分析解决方案是其同构弛豫的最笼统的形式(即,放松比例耦合的放松成比例耦合将消除找到有限储层的紧凑,一般分析表达式的能力)。这些结果在诊断扩展储层和相关方法的行为和实施方面应该具有广泛的效用,包括融合到Landauer限制(对于非相互作用系统)和Meir-Wingreen公式(对于多体系统)。
Open system simulations of quantum transport provide a platform for the study of true steady states, Floquet states, and the role of temperature, time-dynamics, and fluctuations, among other physical processes. They are rapidly gaining traction, especially techniques that revolve around "extended reservoirs" - a collection of a finite number of degrees of freedom with relaxation that maintain a bias or temperature gradient - and have appeared under various guises (e.g., the extended or mesoscopic reservoir, auxiliary master equation, and driven Liouville-von Neumann approaches). Yet, there are still a number of open questions regarding the behavior and convergence of these techniques. Here, we derive general analytical solutions, and associated asymptotic analyses, for the steady-state current driven by finite reservoirs with proportional coupling to the system/junction. In doing so, we present a simplified and unified derivation of the non-interacting and many-body steady-state currents through arbitrary junctions, including outside of proportional coupling. We conjecture that the analytic solution for proportional coupling is the most general of its form for isomodal relaxation (i.e., relaxing proportional coupling will remove the ability to find compact, general analytical expressions for finite reservoirs). These results should be of broad utility in diagnosing the behavior and implementation of extended reservoir and related approaches, including the convergence to the Landauer limit (for non-interacting systems) and the Meir-Wingreen formula (for many-body systems).