论文标题

通过双任务一致性半监督医学图像分割

Semi-supervised Medical Image Segmentation through Dual-task Consistency

论文作者

Luo, Xiangde, Chen, Jieneng, Song, Tao, Chen, Yinan, Wang, Guotai, Zhang, Shaoting

论文摘要

基于深度学习的半监督学习(SSL)算法已导致有希望的医学图像细分结果,并可以通过利用未标记的数据来减轻医生昂贵的注释。但是,文献中大多数现有的SSL算法倾向于通过扰动网络和/或数据来正规化模型培训。观察到多/双任务学习会参与具有固有预测扰动的各种信息,我们在这项工作中提出了一个问题:我们可以明确地构建任务级别的正规化,而不是隐含地构建网络和/或数据级别的ssl-and-dervel andterturbation and-trans-trans-trans-tormations ssl?为了回答这个问题,我们首次提出了一个新颖的双任务一致性半监督框架。具体而言,我们使用一个双任务深网,该网络共同预测了Pixel-wise分割图和目标的几何感知水平设置表示。通过可区分的任务变换层将级别集表示为近似分割图。同时,我们在级别设定的分割图和标记和未标记数据的直接预测分割图之间引入了双任务一致性正规化。在两个公共数据集上进行的广泛实验表明,我们的方法可以通过合并未标记的数据来在很大程度上改善性能。同时,我们的框架优于最先进的半监督医学图像分割方法。代码可在以下网址找到:https://github.com/luoxd1996/dtc

Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: https://github.com/Luoxd1996/DTC

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源