论文标题

明确的föllmer-雪橇分解和离散化,并在指数lévy模型中进行跳跃校正

Explicit Föllmer--Schweizer decomposition and discretization with jump correction in exponential Lévy models

论文作者

Thuan, Nguyen Tran

论文摘要

我们研究了指数Lévy模型中的两个对冲问题。首先,我们为在轻度条件下的欧洲类型期权的Föllmer-Schweizer分解提供了明确的表示,这意味着相应的局部风险最小化策略的封闭式表达。其次,我们使用跳跃校正方法由指数lévy过程驱动的随机积分离散。随着预期的离散时间增加数量的增加,由加权BMO空间衡量了产生的离散误差的收敛率,这也意味着$ l_p $ - 估算值,$ p \ in(2,\ infty)$。此外,解决了满足反向Hölder不平等的措施的改变的影响。作为一种应用,研究了通过离散局部风险最小化策略引起的错误,以依赖莱维度量的性质,收益函数的规律性和所选的随机离散时间。

We investigate two hedging problems in exponential Lévy models. First, we provide an explicit representation for the Föllmer--Schweizer decomposition of European type options under mild conditions, which implies a closed-form expression of the corresponding local risk-minimizing strategies. Secondly, we discretize stochastic integrals driven by an exponential Lévy process using a jump correction method. The convergence rate of the resulting discretization error as the expected number of discretization times increases is measured in weighted BMO spaces, implying also $L_p$-estimates, $p \in (2, \infty)$. Moreover, the effect of a change of measure satisfying a reverse Hölder inequality is addressed. As an application, the error caused by discretizing the local risk-minimizing strategies is investigated in dependence of properties of the Lévy measure, the regularity of the payoff function and the chosen random discretization times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源