论文标题
积聚磁盘的磁场控制着地球行星的组成
Accretion disk's magnetic field controlled the composition of the terrestrial planets
论文作者
论文摘要
软骨是陆地行星的基础,具有氧气,铁,镁和硅的质量和原子比例,总计$ \ geq $ 90 \%\%\%\%和可变mg/si($ \ sim $ 25 \%),fe/si($ \ geq $ \ geq $ 2)和fe/o(fe/o $ geq of geq $ geq of geq $ \ 3)。地球和陆地行星(水星,金星和火星)分为三层:金属芯,一个硅酸盐壳(地幔和地壳),以及气体,冰的挥发性信封,对于地球,液态水。每个层都有不同的主要元素(例如,随着深度增加Fe含量,并增加了表面的氧气含量)。仍然未知的是,在变质磁盘积聚期间的物理过程与在结膜后磁盘积聚期间(例如,撞击侵蚀)会影响这些最终的体积组成。在这里,我们预测地球行星的组成,并表明它们的核心质量分数和未压缩的密度与它们的地中心距离相关,并遵循原始磁盘中磁场强度的简单模型。我们的模型评估了铁的分布,以增加氧化态,空气动力学以及从太阳向外的磁场强度降低,从而导致陆地行星的核心尺寸减小,并具有径向距离。这种分布将增强我们的太阳系中的可居住性,并且同样适用于欧洲航天系统。
Chondrites, the building blocks of the terrestrial planets, have mass and atomic proportions of oxygen, iron, magnesium, and silicon totaling $\geq$90\% and variable Mg/Si ($\sim$25\%), Fe/Si (factor of $\geq$2), and Fe/O (factor of $\geq$3). The Earth and terrestrial planets (Mercury, Venus, and Mars) are differentiated into three layers: a metallic core, a silicate shell (mantle and crust), and a volatile envelope of gases, ices, and, for the Earth, liquid water. Each layer has different dominant elements (e.g., increasing Fe content with depth and increasing oxygen content to the surface). What remains an unknown is to what degree did physical processes during nebular disk accretion versus those during post-nebular disk accretion (e.g., impact erosion) influence these final bulk compositions. Here we predict terrestrial planet compositions and show that their core mass fractions and uncompressed densities correlate with their heliocentric distance, and follow a simple model of the magnetic field strength in the protoplanetary disk. Our model assesses the distribution of iron in terms of increasing oxidation state, aerodynamics, and a decreasing magnetic field strength outward from the Sun, leading to decreasing core size of the terrestrial planets with radial distance. This distribution would enhance habitability in our solar system, and would be equally applicable to exo-planetary systems.