论文标题
通过深度学习破坏绝热量子控制
Breaking Adiabatic Quantum Control with Deep Learning
论文作者
论文摘要
在数字量子计算时代,最佳数字化脉冲是有效量子控制所需的。该目标转化为动态编程,其中深入加强学习(DRL)代理人有才华。作为参考,对绝热性(STA)的快捷方式提供了通过脉冲控制来提高绝热速度的分析方法。在这里,我们选择了量子位的单组分控制,类似于无处不在的两级Landau-Zener问题进行门操作。我们旨在通过组合STA和DRL算法来获取快速,健壮的数字脉冲。特别是,我们发现DRL会导致稳健的数字量子控制,而操作时间则由由STA决定的量子速度限制界定。此外,我们证明了DRL可以实现针对系统错误的鲁棒性,而无需STA的任何输入。我们的结果引入了数字量子控制的一般框架,从而导致了量子信息处理的有希望的增强。
In the era of digital quantum computing, optimal digitized pulses are requisite for efficient quantum control. This goal is translated into dynamic programming, in which a deep reinforcement learning (DRL) agent is gifted. As a reference, shortcuts to adiabaticity (STA) provide analytical approaches to adiabatic speed up by pulse control. Here, we select single-component control of qubits, resembling the ubiquitous two-level Landau-Zener problem for gate operation. We aim at obtaining fast and robust digital pulses by combining STA and DRL algorithm. In particular, we find that DRL leads to robust digital quantum control with operation time bounded by quantum speed limits dictated by STA. In addition, we demonstrate that robustness against systematic errors can be achieved by DRL without any input from STA. Our results introduce a general framework of digital quantum control, leading to a promising enhancement in quantum information processing.