论文标题

使用点过程对水力地球化学数据的贝叶斯统计分析:多组分流体混合物中源检测的新工具

Bayesian statistical analysis of hydrogeochemical data using point processes: a new tool for source detection in multicomponent fluid mixtures

论文作者

Reype, Christophe, Richard, Antonin, Deaconu, Madalina, Stoica, Radu

论文摘要

水力地球化学数据可以看作是多维空间中的点云。该空间的每个维度都代表水力地球化学参数(即盐度,溶质浓度,浓度比,同位素组成...)。虽然许多地质流体的组成是通过多种来源之间的混合来控制的,但与水力地球化学数据集有关的关键问题是检测来源。通过将水力地球化学数据视为空间数据,本文为基于点过程的源检测问题提供了新的解决方案。结果显示在地热流体的模拟和实际数据上。

Hydrogeochemical data may be seen as a point cloud in a multi-dimensional space. Each dimension of this space represents a hydrogeochemical parameter (i.e. salinity, solute concentration, concentration ratio, isotopic composition...). While the composition of many geological fluids is controlled by mixing between multiple sources, a key question related to hydrogeochemical data set is the detection of the sources. By looking at the hydrogeochemical data as spatial data, this paper presents a new solution to the source detection problem that is based on point processes. Results are shown on simulated and real data from geothermal fluids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源