论文标题

截短的$ t $ - adic对称的多个Zeta值和双层式关系

Truncated $t$-adic symmetric multiple zeta values and double shuffle relations

论文作者

Ono, Masataka, Seki, Shin-ichiro, Yamamoto, Shuji

论文摘要

我们通过考虑其有限的截断来研究对称的多重Zeta值的改进,称为$ t $ ADIC对称的多重Zeta值。更确切地说,两种正规化(谐波和散装)给出了两种$ t $ - ad-adic对称的多重Zeta值,因此我们相应地引入了两种截断。然后,我们证明我们的截断趋向于相应的$ t $ - 亚种对称多重Zeta值,并分别满足谐波和洗牌关系。这为$ t $ addic对称的多个Zeta值提供了新的证明,这是Jarossay首先证明的。为了证明洗牌关系,我们发展了截断的$ t $ t $对称对称的多重Zeta值与$ 2 $颜色的扎根树相关的理论。最后,我们讨论了Kaneko-Zagier的猜想和Mordell-Tornheim类型的$ T $ ADIC对称的多重Zeta值的改进。

We study a refinement of the symmetric multiple zeta value, called the $t$-adic symmetric multiple zeta value, by considering its finite truncation. More precisely, two kinds of regularizations (harmonic and shuffle) give two kinds of the $t$-adic symmetric multiple zeta values, thus we introduce two kinds of truncations correspondingly. Then we show that our truncations tend to the corresponding $t$-adic symmetric multiple zeta values, and satisfy the harmonic and shuffle relations, respectively. This gives a new proof of the double shuffle relations for $t$-adic symmetric multiple zeta values, first proved by Jarossay. In order to prove the shuffle relation, we develop the theory of truncated $t$-adic symmetric multiple zeta values associated with $2$-colored rooted trees. Finally, we discuss a refinement of Kaneko-Zagier's conjecture and the $t$-adic symmetric multiple zeta values of Mordell-Tornheim type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源