论文标题

DCTRGAN:通过重新加权提高生成模型的精度

DCTRGAN: Improving the Precision of Generative Models with Reweighting

论文作者

Diefenbacher, Sascha, Eren, Engin, Kasieczka, Gregor, Korol, Anatolii, Nachman, Benjamin, Shih, David

论文摘要

深度学习的重大进展导致了更广泛使用和精确的基于神经网络的生成模型,例如生成对抗网络(GAN)。我们使用调谐和重新升级(DCTR)协议的深层神经网络(DCTR)基于深层神经网络,对深层生成模型进行了事后校正,以进一步提高其忠诚度。校正采用重新加权函数的形式,可以在模拟中进行预测时应用于生成的示例。我们使用对标准多模式概率密度训练的GAN以及高能物理学的量热计模拟来说明这种方法。我们表明,加权的GAN示例显着提高了生成的样品的准确性,而统计功率损失很大。这种方法可以应用于任何生成模型,是用于高能量物理应用及其他地区的有希望的改进方法。

Significant advances in deep learning have led to more widely used and precise neural network-based generative models such as Generative Adversarial Networks (GANs). We introduce a post-hoc correction to deep generative models to further improve their fidelity, based on the Deep neural networks using the Classification for Tuning and Reweighting (DCTR) protocol. The correction takes the form of a reweighting function that can be applied to generated examples when making predictions from the simulation. We illustrate this approach using GANs trained on standard multimodal probability densities as well as calorimeter simulations from high energy physics. We show that the weighted GAN examples significantly improve the accuracy of the generated samples without a large loss in statistical power. This approach could be applied to any generative model and is a promising refinement method for high energy physics applications and beyond.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源