论文标题

用于计算Morse-Smale复合物的GPU平行算法

A GPU Parallel Algorithm for Computing Morse-Smale Complexes

论文作者

Subhash, Varshini, Pandey, Karran, Natarajan, Vijay

论文摘要

Morse-Smale复合体是一个经过深入研究的拓扑结构,代表标量函数的临界点之间的梯度流动行为。它支持多尺度的拓扑分析和特征丰富的科学数据的可视化。已经提出了几种平行算法,用于快速计算3D Morse-Sale复合物。它的计算继续构成巨大的算法挑战。特别是,马鞍临界点之间连接的非平凡结构不适合并行计算。本文介绍了一种用于计算Morse-Smale复合物和GPU实现GMSC的细粒状并行算法。该算法首先通过转换为向量操作的序列确定鞍座的达到性能,然后通过将鞍座转换为一系列矩阵操作来计算鞍座之间的路径。计算实验表明,该方法在PYMS3D和TTK上(当前共享内存实现)上实现了高达8.6倍的速度。本文还对算法的不同步骤进行了全面的实验分析,并报告了它们对运行时性能的贡献。最后,它引入了一种基于CPU的数据并行算法,用于通过迭代临界点对来简化Morse-Smale复合物。

The Morse-Smale complex is a well studied topological structure that represents the gradient flow behavior between critical points of a scalar function. It supports multi-scale topological analysis and visualization of feature-rich scientific data. Several parallel algorithms have been proposed towards the fast computation of the 3D Morse-Smale complex. Its computation continues to pose significant algorithmic challenges. In particular, the non-trivial structure of the connections between the saddle critical points are not amenable to parallel computation. This paper describes a fine grained parallel algorithm for computing the Morse-Smale complex and a GPU implementation gMSC. The algorithm first determines the saddle-saddle reachability via a transformation into a sequence of vector operations, and next computes the paths between saddles by transforming it into a sequence of matrix operations. Computational experiments show that the method achieves up to 8.6x speedup over pyms3d and 6x speedup over TTK, the current shared memory implementations. The paper also presents a comprehensive experimental analysis of different steps of the algorithm and reports on their contribution towards runtime performance. Finally, it introduces a CPU based data parallel algorithm for simplifying the Morse-Smale complex via iterative critical point pair cancellation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源