论文标题
构建Cauchy数据,以动态形成明显的视野和Penrose不等式
Construction of Cauchy data for the dynamical formation of apparent horizons and the Penrose Inequality
论文作者
论文摘要
基于临界初始数据,我们为爱因斯坦真空系统构建平滑渐近的cauchy初始数据,该数据不包含边缘外部捕获的表面(MOT),但其未来的进化包含一个被捕获的区域,该区域本身受到明显的地平线的界定(由MOT散发出平滑的超曲面叶状)。 尽管这些解决方案的长时间行为尚不清楚,但KERR稳定性的陈述将产生一个动力学,批判性,非球面对称的真空示例类别,以构成弱宇宙审查和最终状态的猜想。 由于获得了对明显范围的数据的ADM质量和MOTS面积获得的估计值,因此该结构产生了一个动力学设置,可以在其中测试猜想的时空penrose不平等。我们表明,不平等在未来的开放区域中存在于初始数据的未来,这本身可以由初始数据的参数控制。
Based on scale critical initial data, we construct smooth asymptotically flat Cauchy initial data for the Einstein vacuum system that does not contain Marginally Outer Trapped Surfaces (MOTS) but whose future evolution contains a trapped region, which itself is bounded by an apparent horizon (a smooth hypersurface foliated by MOTS). Although the long time behaviour of these solutions is unknown, a statement of Kerr Stability would yield a dynamical, scale critical, non-spherically symmetric class of vacuum examples for the conjectures of Weak Cosmic Censorship and Final State. Owing to estimates obtained for the ADM mass of the data and the area of the MOTS foliating the apparent horizon, this construction yields a dynamical setting in which to test the conjectured spacetime Penrose Inequality. We show that the inequality holds in an open region in the future of the initial data, which itself can be controlled by the parameters of the initial data.