论文标题

带有真实或单模型Galois共轭物的双帝国数量的几何形状

The geometry of bi-Perron numbers with real or unimodular Galois conjugates

论文作者

Liechti, Livio, Pankau, Joshua

论文摘要

在所有双帝国数字中,我们表征了所有的galois共轭物是真实的或单形的,那些承认能力是伪anosov同构的力量,这是由瑟斯顿的结构引起的。反过来,这相当于承认是两部分Coxeter转换的光谱半径的功率。

Among all bi-Perron numbers, we characterise those all of whose Galois conjugates are real or unimodular as the ones that admit a power which is the stretch factor of a pseudo-Anosov homeomorphism arising from Thurston's construction. This is in turn equivalent to admitting a power which is the spectral radius of a bipartite Coxeter transformation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源