论文标题
带有真实或单模型Galois共轭物的双帝国数量的几何形状
The geometry of bi-Perron numbers with real or unimodular Galois conjugates
论文作者
论文摘要
在所有双帝国数字中,我们表征了所有的galois共轭物是真实的或单形的,那些承认能力是伪anosov同构的力量,这是由瑟斯顿的结构引起的。反过来,这相当于承认是两部分Coxeter转换的光谱半径的功率。
Among all bi-Perron numbers, we characterise those all of whose Galois conjugates are real or unimodular as the ones that admit a power which is the stretch factor of a pseudo-Anosov homeomorphism arising from Thurston's construction. This is in turn equivalent to admitting a power which is the spectral radius of a bipartite Coxeter transformation.