论文标题
二次残留物和相关身份的产品
Products of quadratic residues and related identities
论文作者
论文摘要
在本文中,我们研究了二次残基的产物模量奇数,并证明了一些涉及二次残基的身份。例如,令$ p $为奇怪的素数。我们证明,如果$ p \ equiv5 \ pmod8 $,则$$ \ prod_ {0 <x <x <p/2,(\ frac {x} {p} {p} {p})= 1} x \ equiv(-1)^{1+r} {1+r} \ pmod p,pm p,p,$ where $ where $( $ 4 $ -Th电源残留物模型$ p $在间隔$(0,p/2)$中。我们的工作涉及班级编号公式,四分之一的高斯总和,Stickelberger的一致性以及负整数dirichlet L系列的值。
In this paper we study products of quadratic residues modulo odd primes and prove some identities involving quadratic residues. For instance, let $p$ be an odd prime. We prove that if $p\equiv5\pmod8$, then $$\prod_{0<x<p/2,(\frac{x}{p})=1}x\equiv(-1)^{1+r}\pmod p,$$ where $(\frac{\cdot}{p})$ is the Legendre symbol and $r$ is the number of $4$-th power residues modulo $p$ in the interval $(0,p/2)$. Our work involves class number formula, quartic Gauss sums, Stickelberger's congruence and values of Dirichlet L-series at negative integers.