论文标题

扩展的Lipkin-Meshkov-Glick Hamiltonian

Extended Lipkin-Meshkov-Glick Hamiltonian

论文作者

Romano, R., Roca-Maza, X., Colò, G., Shen, Shihang

论文摘要

设计了Lipkin-Meshkov-Glick(LMG)模型,以测试不同近似形式主义治疗许多粒子系统的有效性。该模型的构建是可以解决的,但又不平凡,以捕获真实物理系统的一些主要特征。在目前的贡献中,我们明确回顾了以下事实:物理学不同领域中常用的不同多体近似显然无法描述确切的LMG解决方案。我们的假设与LMG模型采用的假设相似,我们提出了基于一般两体相互作用的新哈密顿量。新模型(扩展LMG)不仅比原始LMG模型更一般,因此具有更大的适用性范围,而且其精确解决方案背后的物理学可以通过常见的多体近似值来更好地捕获。在此改进的基础上,哈密顿量的一个新术语取决于成分的数量并使系统两极化。讨论了相关的对称性破坏,以及对更现实的系统的研究的一些影响。

The Lipkin-Meshkov-Glick (LMG) model was devised to test the validity of different approximate formalisms to treat many-particle systems. The model was constructed to be exactly solvable and yet non-trivial, in order to capture some of the main features of real physical systems. In the present contribution, we explicitly review the fact that different many-body approximations commonly used in different fields in physics clearly fail to describe the exact LMG solution. With similar assumptions as those adopted for the LMG model, we propose a new Hamiltonian based on a general two-body interaction. The new model (Extended LMG) is not only more general than the original LMG model and, therefore, with a potentially larger spectrum of applicability, but also the physics behind its exact solution can be much better captured by common many-body approximations. At the basis of this improvement lies a new term in the Hamiltonian that depends on the number of constituents and polarizes the system; the associated symmetry breaking is discussed, together with some implications for the study of more realistic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源