论文标题
A $ k $ - 高度的路径超过时空分数布朗尼运动
A $K$-rough path above the space-time fractional Brownian motion
论文作者
论文摘要
在任何空间维度$ d $中,我们在时空或空间分数布朗运动方面构建了$ k $的路径。这使我们能够为相应的抛物线安德森模型提供解释和独特的解决方案,并从重新归一化的意义上理解。我们还考虑了空间分数噪声的情况。
We construct a $K$-rough path above either a space-time or a spatial fractional Brownian motion, in any space dimension $d$. This allows us to provide an interpretation and a unique solution for the corresponding parabolic Anderson model, understood in the renormalized sense. We also consider the case of a spatial fractional noise.