论文标题
功能重归其化和$ \ overline {\ text {ms}} $
Functional Renormalization and $\overline{\text{MS}}$
论文作者
论文摘要
使用标量场理论,我们讨论了调节剂的选择,该选择插入了功能重新归化组方程中,在一个和两个循环下重现了维尺寸正则化的结果。结果流程方程可视为$ \叠加{\ text {ms}}} \,$ scheme的非扰动扩展。我们通过在二维中恢复所有多政治模型来支持这一主张。我们讨论对任何维度的可能概括。最后,我们表明该方法还保留了非线性实现的对称性,这对于其他调节剂来说是明确的优势。
Working with scalar field theories, we discuss choices of regulator that, inserted in the functional renormalization group equation, reproduce the results of dimensional regularization at one and two loops. The resulting flow equations can be seen as nonperturbative extensions of the $\overline{\text{MS}}\,$ scheme. We support this claim by recovering all the multicritical models in two dimensions. We discuss a possible generalization to any dimension. Finally, we show that the method also preserves nonlinearly realized symmetries, which is a definite advantage with respect to other regulators.