论文标题

广义SU(2)Proca理论重建及以后

Generalized SU(2) Proca theory reconstructed and beyond

论文作者

Cadavid, Alexander Gallego, Rodriguez, Yeinzon, Gomez, L. Gabriel

论文摘要

作为引入新的引力自由度的修改后的重力理论,广义的su(2)proca理论(简称GSU2P)是众所周知的广义Proca理论的非亚洲版本,在SU(2)组的全球变换下,该动作是不变的。该理论是在物理中首次提出的。 Rev. D 94(2016)084041,已经实施了所需的主要约束关系,以使Lagrangian堕落,并根据Poincaré集团的不可还原表示,从而从矢量领域中删除了一个自由。后来在物理中显示。 Rev. D 101(2020)045008,同上045009,该次级约束关系关系,对于广义PROCA理论而言,这是为了关闭约束代数。本文的目的是在GSU2P中实施这种次要约束 - 执行关系,并使理论的构建更加透明。由于Lagrangian中的几个术语在Phys中被驳回。 Rev. D 94(2016)084041通过它们通过总衍生物等效到其他术语,并非所有后者都满足次要约束 - 遵守关系的关系,这项工作并不是那么简单,不像将这种关系直接应用于旧理论的生成的lagrangian部分。因此,我们有动力从头开始重建该理论。在此过程中,我们发现了GSU2P超越。

As a modified gravity theory that introduces new gravitational degrees of freedom, the generalized SU(2) Proca theory (GSU2P for short) is the non-Abelian version of the well-known generalized Proca theory where the action is invariant under global transformations of the SU(2) group. This theory was formulated for the first time in Phys. Rev. D 94 (2016) 084041, having implemented the required primary constraint-enforcing relation to make the Lagrangian degenerate and remove one degree of freedom from the vector field in accordance with the irreducible representations of the Poincaré group. It was later shown in Phys. Rev. D 101 (2020) 045008, ibid 045009, that a secondary constraint-enforcing relation, which trivializes for the generalized Proca theory but not for the SU(2) version, was needed to close the constraint algebra. It is the purpose of this paper to implement this secondary constraint-enforcing relation in GSU2P and to make the construction of the theory more transparent. Since several terms in the Lagrangian were dismissed in Phys. Rev. D 94 (2016) 084041 via their equivalence to other terms through total derivatives, not all of the latter satisfying the secondary constraint-enforcing relation, the work was not so simple as directly applying this relation to the resultant Lagrangian pieces of the old theory. Thus, we were motivated to reconstruct the theory from scratch. In the process, we found the beyond GSU2P.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源