论文标题
联合网络优化框架可预测静止状态功能性MRI数据的临床严重程度
A Joint Network Optimization Framework to Predict Clinical Severity from Resting State Functional MRI Data
论文作者
论文摘要
我们提出了一个新颖的优化框架,以预测静止状态fMRI(RS-FMRI)数据的临床严重程度。我们的模型由两个耦合术语组成。第一项将相关矩阵分解为一个稀疏的代表性子网组,该子网定义了网络歧管。这些子网络被建模为排名一的外生产,与整个大脑共激活的元素模式相对应。子网通过患者特异性的非阴性系数组合。第二项是一个线性回归模型,该模型使用患者特异性系数预测临床严重程度的度量。我们在十倍交叉验证设置中在两个单独的数据集上验证我们的框架。第一个是由诊断为自闭症谱系障碍(ASD)的五十八名患者的队列。第二个数据集由来自公共可用ASD数据库的63名患者组成。我们的方法的表现优于标准的半监督框架,这些框架采用常规图形理论和统计表示学习技术将RS-FMRI相关性与行为相关联。相比之下,我们的联合网络优化框架利用了RS-FMRI相关矩阵的结构,以同时捕获组级别的效果和患者的异质性。最后,我们证明了我们提出的框架可鲁棒地识别ASD的临床相关网络的特征。
We propose a novel optimization framework to predict clinical severity from resting state fMRI (rs-fMRI) data. Our model consists of two coupled terms. The first term decomposes the correlation matrices into a sparse set of representative subnetworks that define a network manifold. These subnetworks are modeled as rank-one outer-products which correspond to the elemental patterns of co-activation across the brain; the subnetworks are combined via patient-specific non-negative coefficients. The second term is a linear regression model that uses the patient-specific coefficients to predict a measure of clinical severity. We validate our framework on two separate datasets in a ten fold cross validation setting. The first is a cohort of fifty-eight patients diagnosed with Autism Spectrum Disorder (ASD). The second dataset consists of sixty three patients from a publicly available ASD database. Our method outperforms standard semi-supervised frameworks, which employ conventional graph theoretic and statistical representation learning techniques to relate the rs-fMRI correlations to behavior. In contrast, our joint network optimization framework exploits the structure of the rs-fMRI correlation matrices to simultaneously capture group level effects and patient heterogeneity. Finally, we demonstrate that our proposed framework robustly identifies clinically relevant networks characteristic of ASD.