论文标题

联合网络优化框架可预测静止状态功能性MRI数据的临床严重程度

A Joint Network Optimization Framework to Predict Clinical Severity from Resting State Functional MRI Data

论文作者

D'Souza, Niharika Shimona, Nebel, Mary Beth, Wymbs, Nicholas, Mostofsky, Stewart H., Venkataraman, Archana

论文摘要

我们提出了一个新颖的优化框架,以预测静止状态fMRI(RS-FMRI)数据的临床严重程度。我们的模型由两个耦合术语组成。第一项将相关矩阵分解为一个稀疏的代表性子网组,该子网定义了网络歧管。这些子网络被建模为排名一的外生产,与整个大脑共激活的元素模式相对应。子网通过患者特异性的非阴性系数组合。第二项是一个线性回归模型,该模型使用患者特异性系数预测临床严重程度的度量。我们在十倍交叉验证设置中在两个单独的数据集上验证我们的框架。第一个是由诊断为自闭症谱系障碍(ASD)的五十八名患者的队列。第二个数据集由来自公共可用ASD数据库的63名患者组成。我们的方法的表现优于标准的半监督框架,这些框架采用常规图形理论和统计表示学习技术将RS-FMRI相关性与行为相关联。相比之下,我们的联合网络优化框架利用了RS-FMRI相关矩阵的结构,以同时捕获组级别的效果和患者的异质性。最后,我们证明了我们提出的框架可鲁棒地识别ASD的临床相关网络的特征。

We propose a novel optimization framework to predict clinical severity from resting state fMRI (rs-fMRI) data. Our model consists of two coupled terms. The first term decomposes the correlation matrices into a sparse set of representative subnetworks that define a network manifold. These subnetworks are modeled as rank-one outer-products which correspond to the elemental patterns of co-activation across the brain; the subnetworks are combined via patient-specific non-negative coefficients. The second term is a linear regression model that uses the patient-specific coefficients to predict a measure of clinical severity. We validate our framework on two separate datasets in a ten fold cross validation setting. The first is a cohort of fifty-eight patients diagnosed with Autism Spectrum Disorder (ASD). The second dataset consists of sixty three patients from a publicly available ASD database. Our method outperforms standard semi-supervised frameworks, which employ conventional graph theoretic and statistical representation learning techniques to relate the rs-fMRI correlations to behavior. In contrast, our joint network optimization framework exploits the structure of the rs-fMRI correlation matrices to simultaneously capture group level effects and patient heterogeneity. Finally, we demonstrate that our proposed framework robustly identifies clinically relevant networks characteristic of ASD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源