论文标题

社交媒体中灾难图像的视觉情感分析

Visual Sentiment Analysis from Disaster Images in Social Media

论文作者

Hassan, Syed Zohaib, Ahmad, Kashif, Hicks, Steven, Halvorsen, Paal, Al-Fuqaha, Ala, Conci, Nicola, Riegler, Michael

论文摘要

社交网络和用户在文本,视觉和音频内容中分享他们的感受,表达和观点的趋势的日益普及,在情感分析中开辟了新的机会和挑战。虽然文本流的情感分析已在文献中广泛探讨,但来自图像和视频的情感分析相对较新。本文重点介绍社会重要领域的视觉情感分析,即社交媒体中的灾难分析。为此,我们为与灾难相关的图像提出了深层的视觉情感分析仪,涵盖了从数据收集,注释,模型选择,实现和评估开始的视觉情感分析的不同方面。为了进行数据注释,并分析了人们对社交媒体中自然灾害和相关图像的情感,已经对全球大量参与者进行了众包研究。众包研究导致了一个大规模的基准数据集,并具有四个不同的注释,每组都针对单独的任务。提出的分析和相关的数据集将为未来在域中进行研究提供基线/基准。我们认为,拟议的系统可以通过帮助不同的利益相关者(例如新闻广播公司,人道主义组织以及公众)来为更宜居的社区做出贡献。

The increasing popularity of social networks and users' tendency towards sharing their feelings, expressions, and opinions in text, visual, and audio content, have opened new opportunities and challenges in sentiment analysis. While sentiment analysis of text streams has been widely explored in literature, sentiment analysis from images and videos is relatively new. This article focuses on visual sentiment analysis in a societal important domain, namely disaster analysis in social media. To this aim, we propose a deep visual sentiment analyzer for disaster related images, covering different aspects of visual sentiment analysis starting from data collection, annotation, model selection, implementation, and evaluations. For data annotation, and analyzing peoples' sentiments towards natural disasters and associated images in social media, a crowd-sourcing study has been conducted with a large number of participants worldwide. The crowd-sourcing study resulted in a large-scale benchmark dataset with four different sets of annotations, each aiming a separate task. The presented analysis and the associated dataset will provide a baseline/benchmark for future research in the domain. We believe the proposed system can contribute toward more livable communities by helping different stakeholders, such as news broadcasters, humanitarian organizations, as well as the general public.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源