论文标题
自动单词的前缀pelindromic长度
On prefix palindromic length of automatic words
论文作者
论文摘要
前缀PALINDROMIC长度$ \ MATHRM {PPL} _ {\ MATHBF {U}}}(n)$的无限单词$ \ Mathbf {u} $是表达长度$ n $ n $ n $ n $ n $ n $ n $ n $ \ mathbffffff palindromes所需的最小数量。自2013年以来,如果$ \ mathrm {ppl} _ {\ mathbf {u}}}(n)$对于每一个上的无限无限单词$ \ mathbf {u} $都不依据,仍然未知,即使几乎所有的aperiodic单词都证明了这一点。同时,唯一众所周知的非平凡无限单词$ \ mathrm {ppl} _ {\ mathbf {u}}(n)$是精确计算的。这个词是$ 2 $ - 自动,可以预见的是,其函数$ \ mathrm {ppl} _ {\ mathbf {t}}}}(n)$ as $ 2 $ - regular,但是对于所有自动单词而言,这都是情况吗? 在本文中,我们证明此功能为$ k $ - 每一个仅包含有限数量的pelindromes的自动单词。对于两个这样的单词,即纸张折叠词和rudin-shapiro Word,我们为此功能提供了一个公式。我们的计算实验表明,这通常是不正确的:对于周期的单词,前缀plindromic长度看起来并不看起来2美元,而对于fibonacci单词,它看起来并不看起来fibonacci-regular。如果经过证明,这些结果将提供自动单词自然功能的罕见示例,而自动词的自然功能不正常。
The prefix palindromic length $\mathrm{PPL}_{\mathbf{u}}(n)$ of an infinite word $\mathbf{u}$ is the minimal number of concatenated palindromes needed to express the prefix of length $n$ of $\mathbf{u}$. Since 2013, it is still unknown if $\mathrm{PPL}_{\mathbf{u}}(n)$ is unbounded for every aperiodic infinite word $\mathbf{u}$, even though this has been proven for almost all aperiodic words. At the same time, the only well-known nontrivial infinite word for which the function $\mathrm{PPL}_{\mathbf{u}}(n)$ has been precisely computed is the Thue-Morse word $\mathbf{t}$. This word is $2$-automatic and, predictably, its function $\mathrm{PPL}_{\mathbf{t}}(n)$ is $2$-regular, but is this the case for all automatic words? In this paper, we prove that this function is $k$-regular for every $k$-automatic word containing only a finite number of palindromes. For two such words, namely the paperfolding word and the Rudin-Shapiro word, we derive a formula for this function. Our computational experiments suggest that generally this is not true: for the period-doubling word, the prefix palindromic length does not look $2$-regular, and for the Fibonacci word, it does not look Fibonacci-regular. If proven, these results would give rare (if not first) examples of a natural function of an automatic word which is not regular.