论文标题

加权光谱群集边界和超球形格鲁什运算符的尖锐乘数定理

Weighted spectral cluster bounds and a sharp multiplier theorem for ultraspherical Grushin operators

论文作者

Casarino, Valentina, Ciatti, Paolo, Martini, Alessio

论文摘要

我们在$ d $二维领域上研究Grushin Type的脱名式椭圆运算符,在$ k $二维球上是$ k <d $的单数。对于这些运算符,我们证明了Mihlin-Hörmander类型的光谱乘数定理,只要$ 2K \ leq d $,它都是最佳的,并且是相应的Bochner-Riesz总和结果。证明取决于合适的加权光谱簇边界,这又取决于超强多项式的精确估计。

We study degenerate elliptic operators of Grushin type on the $d$-dimensional sphere, which are singular on a $k$-dimensional sphere for some $k < d$. For these operators we prove a spectral multiplier theorem of Mihlin-Hörmander type, which is optimal whenever $2k \leq d$, and a corresponding Bochner-Riesz summability result. The proof hinges on suitable weighted spectral cluster bounds, which in turn depend on precise estimates for ultraspherical polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源