论文标题

扭曲的Ehresmann Schauenburg双子虫

Twisted Ehresmann Schauenburg bialgebroids

论文作者

Han, Xiao

论文摘要

在相应的Hopf代数是同时的,并且与This Cleft Hopf galos cleois Extermention相应的Unital Cocycle的形象,我们在Ehresmann Schauenburg双galois扩展的Ehresmann Schauenburg双gebroid上构建了可逆性的2个coycle。此外,我们表明,这种类型的任何Ehresmann Schauenburg双晶型均与Ehresmann Schauenburg Bialgebroid的2个旋转旋转是同构的,与霍普夫·加洛伊斯(Hopf galois)延伸相对应,不含Cocycle,没有cocycle,而Comodule Algebra是普通的Algebra smash smash sumash sumash supge subera subbra subbra sup sup supale salbra and Hup Albra and Hup Alarbra(i. $ \ c(b/#_σh,h)\ simeq \ c(b \ #h,h)^{\tildeσ} $)。我们还研究了基本对象的理论,其中基础是微不足道的,但不需要霍普夫代数是共同的。

We construct an invertible normalised 2 cocycle on the Ehresmann Schauenburg bialgebroid of a cleft Hopf Galois extension under the condition that the corresponding Hopf algebra is cocommutative and the image of the unital cocycle corresponding to this cleft Hopf Galois extension belongs to the centre of the coinvariant subalgebra. Moreover, we show that any Ehresmann Schauenburg bialgebroid of this kind is isomorphic to a 2-cocycle twist of the Ehresmann Schauenburg bialgebroid corresponding to a Hopf Galois extension without cocycle, where comodule algebra is an ordinary smash product of the coinvariant subalgebra and the Hopf algebra (i.e. $\C(B/#_σH, H)\simeq \C(B\#H, H)^{\tildeσ}$). We also study the theory in the case of a Galois object where the base is trivial but without requiring the Hopf algebra to be cocommutative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源