论文标题

计算和索引迭代指数的固定点的系统方法

A systematic approach to computing and indexing the fixed points of an iterated exponential

论文作者

Milioto, Dominic C.

论文摘要

本文介绍了一种系统计算和索引固定点的系统方法,用于固定的$ z $或等效地,$ t_2(w; z)= w-z^{z^w} $的根。根源是使用修改版本的定点迭代的修改版本计算的,并由整数三重态索引$ \ {n,m,p \} $,该版本将根与$ t_2 $的唯一分支相关联。提出了此命名约定,足以用$ \ Mathbb {z}^2 $枚举的$(n,m)$枚举该功能的所有根。但是,附近的分支可以具有多个根。这些情况由第三个参数$ p $确定。这项工作是用$ z $的理性或符号值完成的,实现了任意的精确算术。将根的精选为$ \ {10^{12},10^{12},p \} $带有$ | z | | \ leq 10^{12} $,用作测试用例。结果对于计算中使用的精度是准确的,通常在$ 30 $至100美元之间。 Mathematica Ver。 $ 12 $用于实施算法。

This paper describes a systematic method of numerically computing and indexing fixed points of $z^{z^w}$ for fixed $z$ or equivalently, the roots of $T_2(w;z)=w-z^{z^w}$. The roots are computed using a modified version of fixed-point iteration and indexed by integer triplets $\{n,m,p\}$ which associate a root to a unique branch of $T_2$. This naming convention is proposed sufficient to enumerate all roots of the function with $(n,m)$ enumerated by $\mathbb{Z}^2$. However, branches near the origin can have multiple roots. These cases are identified by the third parameter $p$. This work was done with rational or symbolic values of $z$ enabling arbitrary precision arithmetic. A selection of roots up to order $\{10^{12},10^{12},p\}$ with $|z|\leq 10^{12}$ was used as test cases. Results were accurate to the precision used in the computations, generally between $30$ and $100$ digits. Mathematica ver. $12$ was used to implement the algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源