论文标题
非线性还原模型的状态和参数估计
Nonlinear reduced models for state and parameter estimation
论文作者
论文摘要
状态估计的目的是将解决方案$ u $重建到$ m $线性测量值的参数偏微分方程,当参数向量$ y $未知时。已经提出了基于简化模型的快速数值恢复方法,该模型是中等尺寸$ n $的线性空间,这些空间是为了近似于解决方案所在的解决方案歧管$ \ MATHCAL {m} $而定制的。这些方法可以被视为贝叶斯估计方法的确定性对应物,并且当通过对还原模型的溶液的近似性表示,事实证明是最佳的。但是,它们固有地受到线性性质的限制,该线性的性质限制了解决方案歧管的Kolmogorov width $ d_m(\ Mathcal {M})$的最佳性能。在本文中,我们建议通过使用由有限的线性空间$ v_k $组成的简单非线性简化模型来打破此障碍,每个模型最多都具有$ m $,并导致不同的估计器$ u_k^*$。基于最小化参数空间的PDE残差的模型选择机制用于从此集合中选择最终的估算器$ u^*$。我们的分析表明,$ u^*$符合解决方案歧管固有的最佳恢复基准,而不是与其kolmogorov宽度绑定。在PDE中仿射参数依赖性的相关情况下,残留最小化过程在计算上很简单。此外,它导致未知参数向量的估计器$ y^*$。在这种情况下,我们还讨论了关节状态和参数估计的交替最小化(坐标下降)算法,从而有可能提高两个估计器的质量。
State estimation aims at approximately reconstructing the solution $u$ to a parametrized partial differential equation from $m$ linear measurements, when the parameter vector $y$ is unknown. Fast numerical recovery methods have been proposed based on reduced models which are linear spaces of moderate dimension $n$ which are tailored to approximate the solution manifold $\mathcal{M}$ where the solution sits. These methods can be viewed as deterministic counterparts to Bayesian estimation approaches, and are proved to be optimal when the prior is expressed by approximability of the solution with respect to the reduced model. However, they are inherently limited by their linear nature, which bounds from below their best possible performance by the Kolmogorov width $d_m(\mathcal{M})$ of the solution manifold. In this paper we propose to break this barrier by using simple nonlinear reduced models that consist of a finite union of linear spaces $V_k$, each having dimension at most $m$ and leading to different estimators $u_k^*$. A model selection mechanism based on minimizing the PDE residual over the parameter space is used to select from this collection the final estimator $u^*$. Our analysis shows that $u^*$ meets optimal recovery benchmarks that are inherent to the solution manifold and not tied to its Kolmogorov width. The residual minimization procedure is computationally simple in the relevant case of affine parameter dependence in the PDE. In addition, it results in an estimator $y^*$ for the unknown parameter vector. In this setting, we also discuss an alternating minimization (coordinate descent) algorithm for joint state and parameter estimation, that potentially improves the quality of both estimators.