论文标题
抗铁磁铁中的绝热和非绝热自旋转移扭矩
Adiabatic and Nonadiabatic Spin-transfer Torques in Antiferromagnets
论文作者
论文摘要
磁性和磁性动力学中的电子传输具有相互依赖性,从而提供了旋转依赖性现象中的关键机制。最近,抗铁磁阶的重点是磁性阶,其中电流诱导的自旋转移扭矩(电子传输对磁性序列的典型效果)之所以争议,主要是因为缺乏基于量子场理论的分析推导。在这里,我们在具有弱倾斜的抗铁磁体中的缓慢变化的交错磁力上构建了自旋转移扭矩的微观理论。在我们的理论中,电子是通过键合/抗抗管状态捕获的,每个状态是系统的本征状,双重变性,并且由于电子跳跃而在空间上扩展到sublattices。本征态的自旋通常取决于一般的动量,并且在没有位点反转对称性的情况下出现了非平凡的自旋旋转锁定,而无需考虑任何自旋轨道耦合。本征态的自旋电流包括与衍生物在动量空间中定义的量规场成正比的异常组件,并在磁化磁化强度上诱导绝热旋转转移扭矩。出乎意料的是,我们发现一种非绝热的扭矩之一具有与绝热旋转转移扭矩相同的形式,而获得的绝热和非绝热的自旋转移扭矩获得的形式与基于对称性考虑的现象学衍生物一致。这一发现表明,应更改抗铁磁体中自旋转移扭矩的常规解释。我们的微观理论提供了对抗铁磁体中自旋相关物理的基本理解。
Electron transport in magnetic orders and the magnetic orders dynamics have a mutual dependence, which provides the key mechanisms in spin-dependent phenomena. Recently, antiferromagnetic orders are focused on as the magnetic order, where current-induced spin-transfer torques, a typical effect of electron transport on the magnetic order, have been debatable mainly because of the lack of an analytic derivation based on quantum field theory. Here, we construct the microscopic theory of spin-transfer torques on the slowly-varying staggered magnetization in antiferromagnets with weak canting. In our theory, the electron is captured by bonding/antibonding states, each of which is the eigenstate of the system, doubly degenerates, and spatially spreads to sublattices because of electron hopping. The spin of the eigenstates depends on the momentum in general, and a nontrivial spin-momentum locking arises for the case with no site inversion symmetry, without considering any spin-orbit couplings. The spin current of the eigenstates includes an anomalous component proportional to a kind of gauge field defined by derivatives in momentum space and induces the adiabatic spin-transfer torques on the magnetization. Unexpectedly, we find that one of the nonadiabatic torques has the same form as the adiabatic spin-transfer torque, while the obtained forms for the adiabatic and nonadiabatic spin-transfer torques agree with the phenomenological derivation based on the symmetry consideration. This finding suggests that the conventional explanation for the spin-transfer torques in antiferromagnets should be changed. Our microscopic theory provides a fundamental understanding of spin-related physics in antiferromagnets.