论文标题
当地同种学和EXT模块的歼灭者的一些界限
Some bounds for the annihilators of local cohomology and Ext modules
论文作者
论文摘要
让$ \ mathfrak a $是可交换的noetherian环$ r $和$ t $的理想,是一个非负整数。令$ m $,$ n $为两个有限生成的$ r $ tomodules。在某些情况下,我们为$ \ operatotOrname {ext}^t_r(m,n)$和$ \ propatotorname {h}^t _ {\ mathfrak a}(m)$的$ \ operatorname {ext}^t_r(m,n)$和$ \ operatatOrname {ext}^t_r(m,n)$提供一些界限,这是在$ m $ $ m $的最小主要分离中独立于最低限度的原始DECOMPOTION的最小主要分解。然后,通过使用这些界限,我们在某些情况下计算局部共同体学和EXT模块的歼灭者。
Let $\mathfrak a$ be an ideal of a commutative Noetherian ring $R$ and $t$ be a non-negative integer. Let $M$ and $N$ be two finitely generated $R$-modules. In certain cases, we give some bounds under inclusion for the annihilators of $\operatorname{Ext}^t_R(M, N)$ and $\operatorname{H}^t_{\mathfrak a}(M)$ in terms of minimal primary decomposition of the zero submodule of $M$ which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.