论文标题
学术绩效估算的计算模型
Computational Models for Academic Performance Estimation
论文作者
论文摘要
在这种情况下,在工作期间,在工作期间,对学生和教职员工的绩效评估是一个主要问题。为此,本文对深度学习和机器学习方法进行了深入的分析,以制定自动化学生的绩效估算系统,该系统适用于部分可用的学生的学术记录。我们的主要贡献是(a)具有15个课程的大型数据集(公开共享学术研究)(b)统计分析和该数据集的估计问题的消融(C)通过深度学习方法和与其他艺术和机器学习算法进行比较的预测分析。与以前依赖功能工程或逻辑功能扣除的方法不同,我们的方法是完全数据驱动的,因此在不同的预测任务中具有更好的性能。
Evaluation of students' performance for the completion of courses has been a major problem for both students and faculties during the work-from-home period in this COVID pandemic situation. To this end, this paper presents an in-depth analysis of deep learning and machine learning approaches for the formulation of an automated students' performance estimation system that works on partially available students' academic records. Our main contributions are (a) a large dataset with fifteen courses (shared publicly for academic research) (b) statistical analysis and ablations on the estimation problem for this dataset (c) predictive analysis through deep learning approaches and comparison with other arts and machine learning algorithms. Unlike previous approaches that rely on feature engineering or logical function deduction, our approach is fully data-driven and thus highly generic with better performance across different prediction tasks.