论文标题
学习拓扑原始原语,用于打结计划
Learning Topological Motion Primitives for Knot Planning
论文作者
论文摘要
在本文中,我们解决了结节运动计划的挑战性问题。我们提出了一种分层方法,其中顶层产生拓扑计划,而底层将该计划转化为连续的机器人运动。顶层将结的任务分解为基于结理论的抽象拓扑作用序列。底层通过学习的拓扑运动原语将这些抽象动作转化为机器人运动轨迹。为了使每个拓扑作用都适应特定的绳索几何形状,运动原语将观察到的绳索构型作为输入。我们通过模仿模拟中的人类示范和强化学习来训练运动原语。为了将人类的简单结演示概括为更复杂的结,我们观察到不同拓扑作用的运动策略和设计神经网络结构以利用这种相似性的相似之处。我们证明,我们学到的运动原语可用于有效地生成运动计划,以束缚过度结。然后,可以使用视觉跟踪和模型预测控制在实际机器人上执行运动计划。我们还证明,尽管只接受了更简单的结的人类示范,但我们学到的运动原语可以组成一个更复杂的五角星般的结。
In this paper, we approach the challenging problem of motion planning for knot tying. We propose a hierarchical approach in which the top layer produces a topological plan and the bottom layer translates this plan into continuous robot motion. The top layer decomposes a knotting task into sequences of abstract topological actions based on knot theory. The bottom layer translates each of these abstract actions into robot motion trajectories through learned topological motion primitives. To adapt each topological action to the specific rope geometry, the motion primitives take the observed rope configuration as input. We train the motion primitives by imitating human demonstrations and reinforcement learning in simulation. To generalize human demonstrations of simple knots into more complex knots, we observe similarities in the motion strategies of different topological actions and design the neural network structure to exploit such similarities. We demonstrate that our learned motion primitives can be used to efficiently generate motion plans for tying the overhand knot. The motion plan can then be executed on a real robot using visual tracking and Model Predictive Control. We also demonstrate that our learned motion primitives can be composed to tie a more complex pentagram-like knot despite being only trained on human demonstrations of simpler knots.