论文标题
多指数函数组件的累积总和的积极性解释了levin-robbins-leu序列子集选择过程中的下限公式
Positivity of Cumulative Sums for Multi-Index Function Components Explains the Lower Bound Formula in the Levin-Robbins-Leu Family of Sequential Subset Selection Procedures
论文作者
论文摘要
我们表现出某个功能的某些强阳性特性,这意味着关键的不等式,这又意味着在Levin-Robbins-Leu属于二进制结果的顺序子集选择程序中正确选择的概率的下限公式。这些属性与以前的工作相比,这些属性提供了关键不平等的更直接,更全面的证明。
We exhibit some strong positivity properties of a certain function which implies a key inequality that in turn implies the lower bound formula for the probability of correct selection in the Levin-Robbins-Leu family of sequential subset selection procedures for binary outcomes. These properties provide a more direct and comprehensive demonstration of the key inequality than was discussed in previous work.