论文标题

分析数十亿付款卡交易的美国餐馆

Profiling US Restaurants from Billions of Payment Card Transactions

论文作者

Dev, Himel, Hamooni, Hossein

论文摘要

支付卡(例如借记或信用卡)是购买商品和服务的最方便的付款方式之一。每天在全球范围内进行数亿张卡交易,产生大量的交易数据。该数据使持卡人 - 与交互的整体视图包含可以使各种应用程序受益的见解,例如付款欺诈检测和商户建议。但是,利用这些见解通常需要有关数据所有者(即付款公司)观点中缺少的商家的其他信息。例如,支付公司不知道商人服务的产品的确切类型。出于商业目的,从外部来源收集商户属性可能很昂贵。在此限制的推动下,我们旨在从交易数据中推断出潜在的商人属性。作为概念证明,我们专注于餐馆,并从交易中推断出餐厅的餐厅类型。为此,我们提出了一个从交易数据中推断出餐厅类型的框架。我们提出的框架包括三个步骤。在第一步中,我们通过薄弱的监督为有限数量的餐馆生成了美食标签。在第二步中,我们从餐厅交易中提取了各种统计特征和神经嵌入。在第三步中,我们使用深层神经网络(DNN)来推断其余的餐厅的美食类型。拟议的框架在对美国餐馆进行分类时达到了76.2%的准确性。据我们所知,这是通过将交易数据分析为唯一来源来推断餐厅类型的第一个框架。

A payment card (such as debit or credit) is one of the most convenient payment methods for purchasing goods and services. Hundreds of millions of card transactions take place across the globe every day, generating a massive volume of transaction data. The data render a holistic view of cardholder-merchant interactions, containing insights that can benefit various applications, such as payment fraud detection and merchant recommendation. However, utilizing these insights often requires additional information about merchants missing from the data owner's (i.e., payment company's) perspective. For example, payment companies do not know the exact type of product a merchant serves. Collecting merchant attributes from external sources for commercial purposes can be expensive. Motivated by this limitation, we aim to infer latent merchant attributes from transaction data. As proof of concept, we concentrate on restaurants and infer the cuisine types of restaurants from transactions. To this end, we present a framework for inferring the cuisine types of restaurants from transaction data. Our proposed framework consists of three steps. In the first step, we generate cuisine labels for a limited number of restaurants via weak supervision. In the second step, we extract a wide variety of statistical features and neural embeddings from the restaurant transactions. In the third step, we use deep neural networks (DNNs) to infer the remaining restaurants' cuisine types. The proposed framework achieved a 76.2% accuracy in classifying the US restaurants. To the best of our knowledge, this is the first framework to infer the cuisine types of restaurants by analyzing transaction data as the only source.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源