论文标题

观察和分析的创造,衰减和再生环形圆锥形簇中的圆锥形光学培养基

Observation and analysis of creation, decay, and regeneration of annular soliton clusters in a lossy cubic-quintic optical medium

论文作者

Reyna, Albert S., Baltar, Henrique T. M. C. M., Bergmann, Emeric, Amaral, Anderson M., Falcão-Filho, Edilson L., Brevet, Pierre-François, Malomed, Boris A., de Araújo, Cid B.

论文摘要

我们观察并分析(2+1) - 维空间孤子(细丝)的环形簇的形成,衰减和后续再生,并具有立方Quintic(焦点 - 缺陷)自我相互作用和强大的非线性的培养基中。在〜17.5雷利长度上保持稳定的细丝簇是由方位角模量不稳定产生的,该型模量不稳定性是由带有嵌入式涡度L = 1的父型环形束产生的。在更长的较长的传播过程中,在非线性损失的作用下,Soliton群集的稳定性损失了。然后,由于来自亲本涡流环提供的储层的功率传递,环形簇会自发再生。确定了重生簇的鲁棒传播的(次要)间隔。实验使用激光束(在波长800 nm处),由脉冲构建,其脉冲持续时间为150 fs,重复速率为1 kHz,在用液态碳二硫化物填充的细胞中传播。基于修改的非线性schrödinger方程的数值计算,该方程在内,该方程包括立方敏感的屈光术语和非线性损失,可与实验发现密切一致。

We observe and analyze formation, decay, and subsequent regeneration of ring-shaped clusters of (2+1)-dimensional spatial solitons (filaments) in a medium with the cubic-quintic (focusing-defocusing) self-interaction and strong dissipative nonlinearity. The cluster of filaments, that remains stable over ~17.5 Rayleigh lengths, is produced by the azimuthal modulational instability from a parent ring-shaped beam with embedded vorticity l = 1. In the course of still longer propagation, the stability of the soliton cluster is lost under the action of nonlinear losses. The annular cluster is then spontaneously regenerated due to power transfer from the reservoir provided by the unsplit part of the parent vortex ring. A (secondary) interval of the robust propagation of the regenerated cluster is identified. The experiments use a laser beam (at wavelength 800 nm), built of pulses with temporal duration 150 fs, at the repetition rate of 1 kHz, propagating in a cell filled by liquid carbon disulfide. Numerical calculations, based on a modified nonlinear Schrödinger equation which includes the cubic-quintic refractive terms and nonlinear losses, provide results in close agreement with the experimental findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源