论文标题
迈向太阳周期预测的代数方法II。用Ardor减少对详细输入数据的需求
Towards an algebraic method of solar cycle prediction II. Reducing the need for detailed input data with ARDoR
论文作者
论文摘要
在本系列的第一篇论文中提出了一种用于重建和可能预测太阳能最小值太阳偶极矩值的代数方法(已知是下一个太阳周期振幅的良好预测指标)。该方法总结了太阳周期中单个活动区域的最终偶极矩贡献:对于此,在太阳周期中,成千上万的活动区域原则上需要详细且可靠的输入数据。为了减少对详细输入数据的需求,我们在这里提出了一个名为Ardor的新的活性区域描述符(活动区域的Roguentes的程度)。在对使用2 $ \ times $ 2D发电机模型模拟的大量活动周期的详细统计分析中,我们证明,通过减少ARDOR进行排名,在周期结束时对太阳能偶极矩进行良好的复制,这足以在$ N $上列出$ n $的列表,同时又有其他数字,就可以考虑到这个列表上的$ n $区域,同时又有一个数字。例如,$ n = 5 $,偶极矩的循环的比例超过$ \ pm $ 30%,仅12%,相对于$ n = 0 $,大大降低了所有活性区域的Ardor设置为零,而该分数为26%。这表明随机影响太阳能活动的周期变化是由较少数量的大````````Rogue)))活跃区域的影响了,而不是许多小AR的综合效应。该方法具有在太阳周期预测中的未来使用。
An algebraic method for the reconstruction and potentially prediction of the solar dipole moment value at sunspot minimum (known to be a good predictor of the amplitude of the next solar cycle) was suggested in the first paper in this series. The method sums up the ultimate dipole moment contributions of individual active regions in a solar cycle: for this, detailed and reliable input data would in principle be needed for thousands of active regions in a solar cycle. To reduce the need for detailed input data, here we propose a new active region descriptor called ARDoR (Active Region Degree of Rogueness). In a detailed statistical analysis of a large number of activity cycles simulated with the 2$\times$2D dynamo model we demonstrate that ranking active regions by decreasing ARDoR, for a good reproduction of the solar dipole moment at the end of the cycle it is sufficient to consider the top $N$ regions on this list explicitly, where $N$ is a relatively low number, while for the other regions the ARDoR value may be set to zero. E.g., with $N=5$ the fraction of cycles where the dipole moment is reproduced with an error exceeding $\pm$30% is only 12%, significantly reduced with respect to the case $N=0$, i.e. ARDoR set to zero for all active regions, where this fraction is 26%. This indicates that stochastic effects on the intercycle variations of solar activity are dominated by the effect of a low number of large ``rogue'' active regions, rather than the combined effect of numerous small ARs. The method has a potential for future use in solar cycle prediction.