论文标题
观察大规模结构调查中的相对论特征 - I:功率谱的多极端
Observing relativistic features in large-scale structure surveys -- I: Multipoles of the power spectrum
论文作者
论文摘要
计划在未来宇宙学调查中探测最大可观察到的距离的努力是出于渴望检测到通货膨胀所留下的遗物相关性的愿望,以及限制超出一般相对性(GR)的新型引力现象的可能性。在如此庞大的尺度上,牛顿的通常方法来建模摘要统计数据(例如功率谱和双光谱)是不够的,我们必须考虑完全相对论和仪表无关的可观察到的可观察到的可观察到的可观察到的方法,例如星系数量,以避免微妙的偏见,例如。在确定$ f _ {\ rm nl} $参数中。在这项工作中,我们提出了能够准确建模和恢复相对论光谱和相关函数的分析管道的初始应用。作为概念的证明,我们专注于红色质量箱的红移空间功率注意到的非零偶极子,使用了深色的黑物质光环的不同质量箱的互相关,使用严格的无关可观察的数量,对过去的相对性n-body simulate in Redshift bin bin $ 1.7 $ 1.7 \ le 2.9 $ 2.9 $ 2.9 $ 2.9 $ 2.9。我们特别注意对功率谱多物的正确估计,比较了对并发症的不同方法,例如调查几何(窗口函数)和对过去光锥的进化/偏见的影响,并讨论我们的结果与以前的尝试如何从相对论模拟中提取新的GR签名。
Planned efforts to probe the largest observable distance scales in future cosmological surveys are motivated by a desire to detect relic correlations left over from inflation, and the possibility of constraining novel gravitational phenomena beyond General Relativity (GR). On such large scales, the usual Newtonian approaches to modelling summary statistics like the power spectrum and bispectrum are insufficient, and we must consider a fully relativistic and gauge-independent treatment of observables such as galaxy number counts in order to avoid subtle biases, e.g. in the determination of the $f_{\rm NL}$ parameter. In this work, we present an initial application of an analysis pipeline capable of accurately modelling and recovering relativistic spectra and correlation functions. As a proof of concept, we focus on the non-zero dipole of the redshift-space power spectrum that arises in the cross-correlation of different mass bins of dark matter halos, using strictly gauge-independent observable quantities evaluated on the past light cone of a fully relativistic N-body simulation in a redshift bin $1.7 \le z \le 2.9$. We pay particular attention to the correct estimation of power spectrum multipoles, comparing different methods of accounting for complications such as the survey geometry (window function) and evolution/bias effects on the past light cone, and discuss how our results compare with previous attempts at extracting novel GR signatures from relativistic simulations.