论文标题

基于快速的Zonotope-tube LPV-MPC用于自动驾驶汽车

Fast Zonotope-Tube-based LPV-MPC for Autonomous Vehicles

论文作者

Alcala, Eugenio, Puig, Vicenc, Quevedo, Joseba, Sename, Olivier

论文摘要

在本文中,我们提出了一种有效的基于在线管的模型预测控制(T-MPC)解决方案,用于自动驾驶,旨在改善计算负载,同时确保在快速和干扰的情况下确保稳健的稳定性和性能。我们专注于通过将非线性车辆方程转换为线性参数(LPV)形式的非线性车辆方程来重新将非线性原始问题重新构成伪线性问题。建议由名义控制器和纠正局部控制器组成的方案。首先,本地控制器被设计为多功能LPV-H $ _ {\ infty} $控制器能够拒绝外部干扰。此外,考虑到系统动力学,本地控制器和diturbance-Insuctions uncultity范围,使用Zonotopes在线计算有限数量的准确到达集(也称为管)。其次,标称控制器被设计为MPC,其中使用LPV车辆模型来加快计算时间,同时保持准确的车辆表示。 MPC采用可及性理论,在线上改变了其状态和输入限制,以确保在促进的干扰下可行性和稳定性。最后,我们测试了提出的方案,并将本地控制器的性能与LQR设计作为最先进的方法进行了比较。我们证明了它在令人不安的快速驾驶情况下的有效性,能够以非常降低的计算成本拒绝强烈的外源性干扰并实现施加的约束。

In this paper, we present an effective online tube-based model predictive control (T-MPC) solution for autonomous driving that aims at improving the computational load while ensuring robust stability and performance in fast and disturbed scenarios. We focus on reformulating the non-linear original problem into a pseudo-linear problem by transforming the non-linear vehicle equations to be expressed in a Linear Parameter Varying (LPV) form. An scheme composed by a nominal controller and a corrective local controller is propossed. First, the local controller is designed as a polytopic LPV-H$_{\infty}$ controller able to reject external disturbances. Moreover, a finite number of accurate reachable sets, also called tube, are computed online using zonotopes taking into account the system dynamics, the local controller and the diturbance-uncertainty bounds considered. Second, the nominal controller is designed as an MPC where the LPV vehicle model is used to speed up the computational time while keeping accurate vehicle representation. Employing reachability theory with zonotopes, the MPC changes online its state and input constraints to ensure robust feasibility and stability under exhogenous disturbances. Finally, we test the presented scheme and compare the local controller performance against the LQR design as state of the art approach. We demonstrate its effectiveness in a disturbed fast driving scenario being able to reject strong exogenous disturbances and fulfilling imposed constraints at a very reduced computational cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源