论文标题
伪 - 富曼尼亚几何形状的曲率度量的独特性
Uniqueness of curvature measures in pseudo-Riemannian geometry
论文作者
论文摘要
最近引入的LIPSCHITZ杀死曲率曲率度量在伪里曼尼亚歧管上满足Weyl原理,即在等距嵌入下是不变的。我们证明它们是由此属性唯一特征的。我们应用这种表征来证明对Lipschitz杀死曲率测量的Künnth型公式,并对所有各向同性伪里曼尼亚人的空间形式进行了不变的概括性价值和曲率测量。
The recently introduced Lipschitz-Killing curvature measures on pseudo-Riemannian manifolds satisfy a Weyl principle, i.e. are invariant under isometric embeddings. We show that they are uniquely characterized by this property. We apply this characterization to prove a Künneth-type formula for Lipschitz-Killing curvature measures, and to classify the invariant generalized valuations and curvature measures on all isotropic pseudo-Riemannian space forms.