论文标题

伪 - 富曼尼亚几何形状的曲率度量的独特性

Uniqueness of curvature measures in pseudo-Riemannian geometry

论文作者

Bernig, Andreas, Faifman, Dmitry, Solanes, Gil

论文摘要

最近引入的LIPSCHITZ杀死曲率曲率度量在伪里曼尼亚歧管上满足Weyl原理,即在等距嵌入下是不变的。我们证明它们是由此属性唯一特征的。我们应用这种表征来证明对Lipschitz杀死曲率测量的Künnth型公式,并对所有各向同性伪里曼尼亚人的空间形式进行了不变的概括性价值和曲率测量。

The recently introduced Lipschitz-Killing curvature measures on pseudo-Riemannian manifolds satisfy a Weyl principle, i.e. are invariant under isometric embeddings. We show that they are uniquely characterized by this property. We apply this characterization to prove a Künneth-type formula for Lipschitz-Killing curvature measures, and to classify the invariant generalized valuations and curvature measures on all isotropic pseudo-Riemannian space forms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源