论文标题

模拟辅助去相关以共振异常检测

Simulation-Assisted Decorrelation for Resonant Anomaly Detection

论文作者

Benkendorfer, Kees, Pottier, Luc Le, Nachman, Benjamin

论文摘要

提出了越来越多的弱和无监督的机器学习方法来实现异常检测,以显着扩展大型强子对撞机和其他地方的搜索程序。这些方法的典型示例之一是寻找共鸣的新物理学,可以在不变的质谱中进行凸起狩猎。完全依赖数据的方法的一个重大挑战是,它们容易从机器学习分类器对不变质量的依赖性中雕刻人造颠簸。我们通过将仿真纳入学习中,探讨了这一挑战的两种解决方案。特别是,我们研究了模拟辅助无可能异常检测(沙拉)与分类器与不变质量之间的相关性的鲁棒性。接下来,我们提出了一种新方法,该方法仅使用模拟进行去相关,而没有标签的分类(CWOLA)方法来实现信号灵敏度。使用对来自LHC奥运会的模拟数据进行完整的背景拟合分析进行比较,并与数据中的相关性相关性很强。

A growing number of weak- and unsupervised machine learning approaches to anomaly detection are being proposed to significantly extend the search program at the Large Hadron Collider and elsewhere. One of the prototypical examples for these methods is the search for resonant new physics, where a bump hunt can be performed in an invariant mass spectrum. A significant challenge to methods that rely entirely on data is that they are susceptible to sculpting artificial bumps from the dependence of the machine learning classifier on the invariant mass. We explore two solutions to this challenge by minimally incorporating simulation into the learning. In particular, we study the robustness of Simulation Assisted Likelihood-free Anomaly Detection (SALAD) to correlations between the classifier and the invariant mass. Next, we propose a new approach that only uses the simulation for decorrelation but the Classification without Labels (CWoLa) approach for achieving signal sensitivity. Both methods are compared using a full background fit analysis on simulated data from the LHC Olympics and are robust to correlations in the data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源