论文标题

Hypertendril:深度神经网络的用户驱动超参数优化的视觉分析

HyperTendril: Visual Analytics for User-Driven Hyperparameter Optimization of Deep Neural Networks

论文作者

Park, Heungseok, Nam, Yoonsoo, Kim, Ji-Hoon, Choo, Jaegul

论文摘要

为了减轻深度神经网络手动调整超参数的疼痛,已经开发了自动化的机器学习(AUTOML)方法,以搜索大型组合搜索空间中的最佳超参数集。但是,AutoML方法的搜索结果显着取决于初始配置,这使得找到适当的配置是一项非平凡的任务。因此,通过视觉分析方法的人类干预在这项任务中具有巨大的潜力。作为响应,我们提出了Hypertendril,这是一种基于Web的视觉分析系统,该系统支持模型不平衡环境中用户驱动的超参数调谐过程。 Hypertendril采用一种新颖的方法来通过迭代,交互式调整过程有效地转向高参数优化,该过程允许用户根据其自身的见解从给定的结果中提炼搜索空间和AutoML方法的配置。使用Hypertendril,用户可以了解各种超参数搜索算法的复杂行为并诊断其配置。此外,Hypertendril还支持可变的重要性分析,以帮助用户根据对不同超参数及其相互作用效果的相对重要性的分析来完善其搜索空间。我们介绍了评估,展示了Hypertendril如何通过纵向用户研究来帮助用户根据互动日志和深度访谈的分析在专业工业环境中进行调整。

To mitigate the pain of manually tuning hyperparameters of deep neural networks, automated machine learning (AutoML) methods have been developed to search for an optimal set of hyperparameters in large combinatorial search spaces. However, the search results of AutoML methods significantly depend on initial configurations, making it a non-trivial task to find a proper configuration. Therefore, human intervention via a visual analytic approach bears huge potential in this task. In response, we propose HyperTendril, a web-based visual analytics system that supports user-driven hyperparameter tuning processes in a model-agnostic environment. HyperTendril takes a novel approach to effectively steering hyperparameter optimization through an iterative, interactive tuning procedure that allows users to refine the search spaces and the configuration of the AutoML method based on their own insights from given results. Using HyperTendril, users can obtain insights into the complex behaviors of various hyperparameter search algorithms and diagnose their configurations. In addition, HyperTendril supports variable importance analysis to help the users refine their search spaces based on the analysis of relative importance of different hyperparameters and their interaction effects. We present the evaluation demonstrating how HyperTendril helps users steer their tuning processes via a longitudinal user study based on the analysis of interaction logs and in-depth interviews while we deploy our system in a professional industrial environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源