论文标题
关于尸体函数的相位检索的注释
A Note on the Phase Retrieval of Holomorphic Functions
论文作者
论文摘要
我们证明,如果F和G是在开放连接的域上的全体形态函数,并且在两个相交段上具有相同的模量,则F = g直到乘以一个单模型常数的乘法,只要片段就具有$π$的非理性倍数的角度。我们还证明,如果F和G是Nevanlinna类中的功能,并且如果| f | = | G |在单位圆和单元盘内的一个圆上,然后f = g直至单型常数的乘法。
We prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then f = g up to the multiplication of a unimodular constant, provided the segments make an angle that is an irrational multiple of $π$. We also prove that if f and g are functions in the Nevanlinna class, and if |f | = |g| on the unit circle and on a circle inside the unit disc, then f = g up to the multiplication of a unimodular constant.