论文标题
air-act2act:人类人类互动数据集,用于向机器人教授非语言社会行为
AIR-Act2Act: Human-human interaction dataset for teaching non-verbal social behaviors to robots
论文作者
论文摘要
为了更好地与用户互动,社交机器人应该了解用户的行为,推断意图并做出适当的反应。机器学习是实施机器人智能的一种方法。它提供了自动从经验中学习和改进的能力,而不是明确告诉机器人该怎么做。社交技能也可以通过观看人类互动视频来学习。但是,在各种情况下学习发生的相互作用,人类人类交互数据集相对稀缺。此外,我们的目标是在老年护理领域使用服务机器人。但是,没有为此域收集的交互数据集。因此,我们介绍了一个人类人类互动数据集,以向机器人讲授非语言社会行为。这是老年人作为表演者参与的唯一互动数据集。我们招募了100名老年人和两名大学生在室内环境中进行10次互动。整个数据集都有5,000个交互样本,每个数据集都包含深度图,身体索引和3D骨骼数据,这些数据被三个Microsoft Kinect V2摄像机捕获。此外,我们还提供了类人动物NAO机器人的关节角度,这些角度是从机器人需要学习的人类行为转换而来的。数据集和有用的Python脚本可在https://github.com/ai4r/air-act2act上下载。它不仅可以用来向机器人讲授社交技能,还可以用基准的行动识别算法来教授社交技能。
To better interact with users, a social robot should understand the users' behavior, infer the intention, and respond appropriately. Machine learning is one way of implementing robot intelligence. It provides the ability to automatically learn and improve from experience instead of explicitly telling the robot what to do. Social skills can also be learned through watching human-human interaction videos. However, human-human interaction datasets are relatively scarce to learn interactions that occur in various situations. Moreover, we aim to use service robots in the elderly-care domain; however, there has been no interaction dataset collected for this domain. For this reason, we introduce a human-human interaction dataset for teaching non-verbal social behaviors to robots. It is the only interaction dataset that elderly people have participated in as performers. We recruited 100 elderly people and two college students to perform 10 interactions in an indoor environment. The entire dataset has 5,000 interaction samples, each of which contains depth maps, body indexes and 3D skeletal data that are captured with three Microsoft Kinect v2 cameras. In addition, we provide the joint angles of a humanoid NAO robot which are converted from the human behavior that robots need to learn. The dataset and useful python scripts are available for download at https://github.com/ai4r/AIR-Act2Act. It can be used to not only teach social skills to robots but also benchmark action recognition algorithms.