论文标题
利用点击流轨迹,以揭示众包预测平台中的低质量工人
Leveraging Clickstream Trajectories to Reveal Low-Quality Workers in Crowdsourced Forecasting Platforms
论文作者
论文摘要
人群经常需要解决认知要求和耗时的任务。众包可以用于复杂的注释任务,从医学成像到地理空间数据,以及此类数据为敏感的应用程序(例如健康诊断或自动驾驶)。但是,表现不佳的人群的存在和流行率得到了很好的认识,可能会对众包的有效性构成威胁。在这项研究中,我们建议使用一个计算框架来识别使用ClickStream轨迹表现不佳的工人的群体。我们专注于众包地缘政治预测。该框架可以揭示不同类型的表现不佳的人,例如具有预测的工人,其准确性远非人群共识,为预测提供低质量解释的人以及那些只是复制其他用户的预测的人。我们的研究表明,ClickStream的聚类和分析是诊断众人群体在利用人群智慧的平台中表现的基本工具。
Crowdwork often entails tackling cognitively-demanding and time-consuming tasks. Crowdsourcing can be used for complex annotation tasks, from medical imaging to geospatial data, and such data powers sensitive applications, such as health diagnostics or autonomous driving. However, the existence and prevalence of underperforming crowdworkers is well-recognized, and can pose a threat to the validity of crowdsourcing. In this study, we propose the use of a computational framework to identify clusters of underperforming workers using clickstream trajectories. We focus on crowdsourced geopolitical forecasting. The framework can reveal different types of underperformers, such as workers with forecasts whose accuracy is far from the consensus of the crowd, those who provide low-quality explanations for their forecasts, and those who simply copy-paste their forecasts from other users. Our study suggests that clickstream clustering and analysis are fundamental tools to diagnose the performance of crowdworkers in platforms leveraging the wisdom of crowds.