论文标题
Reinhardt域上Toeplitz运营商的零产品
Zero products of Toeplitz operators on Reinhardt domains
论文作者
论文摘要
令$ω$为$ \ mathbb {c}^n $和$ ϕ_1,\ ldots,ϕ_m $是有限的准准同质函数的有限总和。我们表明,如果toeplitz运算符的乘积$ t_ {ϕ_m} \ cdots t_ {ϕ_1} = 0 $在$ω$上的伯格曼空间上,则$ ϕ_j = 0 $,对于某些$ j $。
Let $Ω$ be a bounded Reinhardt domain in $\mathbb{C}^n$ and $ϕ_1,\ldots,ϕ_m$ be finite sums of bounded quasi-homogeneous functions. We show that if the product of Toeplitz operators $T_{ϕ_m}\cdots T_{ϕ_1}=0$ on the Bergman space on $Ω$, then $ϕ_j=0$ for some $j$.